
Historical Ciphers and Unconditional Security

Gerardo Pelosi

Department of Electronics, Information and Bioengineering – (DEIB)
Politecnico di Milano

gerardo.pelosi - at - polimi.it

G. Pelosi, A. Barenghi (DEIB) Historical Ciphers and Unconditional Security 1 / 60



Overview

Lesson contents

Historical symmetric-key ciphers (aka Hand Ciphers)
Substitution ciphers

Mono-alphabetic ciphers
Poly-alphabetic ciphers

Permutation ciphers and Affine ciphers

Information Theoretic security

Shannon’s theorem
Vernam cipher
Entropy, Spurious keys and Unicity distance

(Mandatory readings: Chapter 3 and Chapter 5 of Smart’s book)
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Monoalphabetic Cipher

Shift cipher

Given an alphabet A = {ABCDEFGHIJKLMNOPQRSTUVWXYZ}, each
letter is identified with a number: A= 0, B= 1,. . .,Z= 25

The message space M includes messages composed of a single letter.

The key of the cipher is a number 0≤k≤25

The encryption replaces each plaintext letter by the letter which is k
places forward in A: c = p + k mod 26, where p and c are the
numbers denoting the positions of the corresponding letters in A.

If k = 3, this is known as Caesar’s cipher

If k = 13, the encryption and decryption are the same process, and
this is known as rot13 cipher.

Observation.
The keyspace cardinality |K| is 26: a bruteforce attack is immediate.
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Generalization of the Shift Cipher: Substitution Ciphers

Monoalphabetic Substitution Cipher

The message space is defined over an alphabet Am,
e.g., Am = {ABCDEFGHIJKLMNOPQRSTUVWXYZ}
The ciphertext space is defined over an alphabet Ac ,
e.g., Ac = {abcdefghijklmnopqrstuvwxyz} (...Possibly, Am ≡ Ac)

The sizes of the two alphabets must match, i.e.: |Am| = |Ac |
The message spaces M, C include messages composed of a single
letter, respectively. That is: M≡Am and C≡Ac .

The encryption transformation can be defined as
the application of any bijective map between the elements of
M and the elements of C
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Substitution Ciphers

Monoalphabetic Substitution Cipher

M: set of the capital letters of the English alphabet; C: set of the
small letters of the English alphabet; listed in lexicographical order

The cipher key K identifies the map (between the two English
alphabets listed in lexicographical order) to compute the ciphertext.

Map µ

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

t m k g o y d s i p e l u a v c r j w x z n h b q f

The encryption of the word “CRYPTOGRAPHY” is obtained applying
the map µ sequentially to each ptx letter: “kjqcxvdjtcsq”

There are as many keys as the bijective maps, i.e., (|Am|)!

For |Am| = 26, the keyspace is 26!≈288 keys wide, which is too large
to bruteforce
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Substitution ciphers

Monoalphabetic Substitution Cipher: PigPen

A well known substitution cipher employs the following mapping between
the english alphabet and graphical symbols

A B C

D E F

G H I

J. K. L.

M. N. O.

P. Q. R.

S
T × U

V

W.
X. × Y.

Z.

A B C

D E F

G H I

J K L

M N O

P Q R

S

T × U

V

W

X × Y

Z

Example: The encryption of the word “CRYPTOGRAPHY” is
CRYPTOGRAPHY
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Substitution Ciphers

Cryptanalysis

There is a 1-to-1 correspondence between plaintext (ptx) and ciphertext
(ctx) letters (also digrams, trigrams, etc). Thus, assuming the Kerchoff’s
principle holds, a Ciphertext-Only attack (COA) easily reveals the key.
(COA: ctxs corresponding to several messages encrypted with the same key should be known)

The statistics of the plaintext language (frequency distribution of the
symbols of Am in M) is known

The statistics of the ciphertext space are derived for the symbols of
Ac in C, over the available ciphertexts

The substitution map (i.e., the key) can be inferred easily by
matching the symbols occurring with similar frequencies

A Known Plaintext Analysis or a Chosen Plaintext Analysis can easily
reveal the key, as well.
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Cryptanalysis COA of a Shift Cipher (1/3)

Given the following ciphertext:

BPMZM WVKM EIA IV COTG LCKSTQVO EQBP NMIBPMZA ITT ABCJJG IVL JZWEV IVL BPM WBPMZ

JQZLA AIQL QV AW UIVG EWZLA OMB WCB WN BWEV OMB WCB, OMB WCB, OMB WCB WN BWEV

IVL PM EMVB EQBP I YCIKS IVL I EILLTM IVL I YCIKS QV I NTCZZG WN MQLMZLWEV BPIB

XWWZ TQBBTM COTG LCKSTQVO EMVB EIVLMZQVO NIZ IVL VMIZ JCB IB MDMZG XTIKM BPMG

AIQL BW PQA NIKM VWE OMB WCB, OMB WCB, OMB WCB WN PMZM IVL PM EMVB EQBP I YCIKS

IVL I EILLTM IVL I YCIKS IVL I DMZG CVPIXXG BMIZ

We need to compare the frequency distribution of the letters in this text
with the one of the standard English language
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Cryptanalysis COA of a Shift Cipher (2/3)

English letter frequencies
A 8.05 J 0.10 S 6.59
B 1.62 K 0.52 T 9.59
C 3.20 L 4.03 U 3.10
D 3.65 M 2.25 V 0.93
E 12.31 N 7.19 W 2.03
F 2.28 O 7.94 X 0.20
G 1.61 P 2.29 Y 1.88
H 5.14 Q 0.20 Z 0.09
I 7.18 R 6.03

Most common bigrams:

TH,HE,IN,ER,

AN,RE,ED,ON,

ES,ST,EN,AT,

TO,NT,HA

Most common trigrams:

THE,ING,AND,

HER,ERE,ENT,

THA,NTH,WAS,

ETH,FOR

Letter frequencies in the ciphertext
A 2.59 J 1.44 S 1.73
B 10.37 K 2.59 T 3.46
C 5.48 L 6.63 U 0.29
D 0.58 M 10.09 V 8.36
E 4.61 N 2.31 W 6.63
F 0.00 O 3.46 X 1.15
G 2.59 P 4.03 Y 1.15
H 0.00 Q 4.03 Z 4.90
I 11.53 R 0.00

Cracking the cipher
The shift of E seems to be 4, 8, 17, 18, or 23
The shift of A seems to be 1, 8, 12, 21, or 22
Hence, a first guess about the key value is k=8
we can now decrypt the ciphertext to reveal:
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Cryptanalysis COA of a Shift Cipher (3/3)

Inferred plaintext:

THERE ONCE WAS AN UGLY DUCKLING WITH FEATHERS ALL STUBBY AND BROWN AND THE OTHER

BIRDS SAID IN SO MANY WORDS GET OUT OF TOWN GET OUT, GET OUT, GET OUT OF TOWN

AND HE WENT WITH A QUACK AND A WADDLE AND A QUACK IN A FLURRY OF EIDERDOWN THAT

POOR LITTLE UGLY DUCKLING WENT WANDERING FAR AND NEAR BUT AT EVERY PLACE THEY

SAID TO HIS FACE NOW GET OUT, GET OUT, GET OUT OF HERE AND HE WENT WITH A QUACK

AND A WADDLE AND A QUACK AND A VERY UNHAPPY TEAR
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Cryptanalysis of a Monoalphabetic Substitution Cipher (1/5)

Given the following ciphertext:

XSO MJIWXVL JODIVA STW VAO VY OZJVCO’W LTJDOWX KVAKOAXJTXI- VAW VY SIDS

XOKSAVLVDQ IAGZWXJQ. KVUCZXOJW, KVUUZAIKTXIVAW TAG UIKJVOLOKXJVAIKW TJO HOLL

JOCJOWOAXOG, TLVADWIGO GIDIXTL UOGIT, KVUCZXOJ DTUOW TAG OLOKXJVAIK KVUUOJKO. TW

HOLL TW SVWXIAD UTAQ JOWOTJKS TAG CJVGZKX GONOLVCUOAX KOAXJOW VY UTPVJ DLVMTL

KVUCTAIOW, XSO JODIVA STW T JTCIGLQ DJVHIAD AZU- MOJ VY IAAVNTXINO AOH

KVUCTAIOW. XSO KVUCZXOJ WKIOAKO GOC- TJXUOAX STW KLVWO JOLTXIVAWSICW HIXS UTAQ

VY XSOWO VJDTAI- WTXIVAW NIT KVLLTMVJTXINO CJVPOKXW, WXTYY WOKVAGUOAXW TAG

NIWIXIAD IAGZWXJITL WXTYY. IX STW JOKOAXLQ IAXJVGZKOG WONO- JTL UOKSTAIWUW YVJ

GONOLVCIAD TAG WZCCVJXIAD OAXJOCJOAOZJITL WXZGOAXW TAG WXTYY, TAG TIUW XV CLTQ T

WIDAIYIKTAX JVLO IA XSO GONOLVCUOAX VY SIDS-XOKSAVLVDQ IAGZWXJQ IA XSO JODIVA.

Again, we need to compare the frequency distribution of the letters in this
text with the one of the standard English language
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Cryptanalysis of a Monoalphabetic Substitution Cipher (2/5)

English letter frequencies
A 8.05 J 0.10 S 6.59
B 1.62 K 0.52 T 9.59
C 3.20 L 4.03 U 3.10
D 3.65 M 2.25 V 0.93
E 12.31 N 7.19 W 2.03
F 2.28 O 7.94 X 0.20
G 1.61 P 2.29 Y 1.88
H 5.14 Q 0.20 Z 0.09
I 7.18 R 6.03

Most common bigrams:

TH,HE,IN,ER,

AN,RE,ED,ON,

ES,ST,EN,AT,

TO,NT,HA

Most common trigrams:

THE,ING,AND,

HER,ERE,ENT,

THA,NTH,WAS,

ETH,FOR

Letter frequencies in the ciphertext
A 8.99 J 6.51 S 3.26
B 0.00 K 4.81 T 8.06
C 2.95 L 4.34 U 3.57
D 3.10 M 0.62 V 7.60
E 0.00 N 1.40 W 7.13
F 0.00 O 11.63 X 7.75
G 3.72 P 0.31 Y 1.61
H 0.78 Q 1.40 Z 2.17
I 7.75 R 0.00

Most common bigrams:
TA,AX,IA,VA

WX,XS,AG,OA

JO,JV

Most common trigrams:
OAX,TAG,IVA

XSO,KVU,TXI

UOA,AXS
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Cryptanalysis of a Monoalphabetic Substitution Cipher (3/5)

Analysis

Since O in the ciphertext occurs with frequency 11.63 we can guess E=O

Common trigrams in the ciphertext are: OAX=E**, and XSO=**E

Common similar trigrams in English are: ENT, ETH, and THE

Hence a first guess to partially decrypt the ciphertext may be: E=O, T=X, H=S, N=A

For the sake of conciseness, from now on we only look at the first two sentences of the
ciphertext:

THE MJIWTVL JEDIVN HTW VNE VY EZJVCE’W LTJDEWT KVNKENTJTTIV NW VY HIDH

TEKHNVLVDQ INGZWTJQ. KVUCZTEJW, KVUU ZNIKATIVNW AND UIKJVELEKTJVNIKW AJE HELL

JECJEWENTED, ALVNDWIDE DIDITAL UEDIA, KVUCZTEJ DAUEW AND ELEKTJVNIK KVUUEJKE.
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Cryptanalysis of a Monoalphabetic Substitution Cipher (4/5)

Analysis

Since T in the ciphertext occurs with frequency 8.06 it is likely that T=A, thus looking also at
the bigrams and trigams we can infer that TA=AN, TAG=AN*, therefore a second guess can be:
T=A and G=D

Looking at the bigrams: IX=*T, and XV=T*, due to the fact that the plaintext is in English it is
highly likely that: I=I and V=O, obtaining:

THE MJIWTVL JEDIVN HAW VNE VY EZJVCE’W LAJDEWT KVNKENTJATIV NW VY HIDH

TEKHNVLVDQ INDZWTJQ. KVUCZTEJW, KVUU ZNIKTTIVNW TNG UIKJVELEKTJVNIKW TJE HELL

JECJEWENTEG, TLVNDWIGE GIDITTL UEGIT, KVUCZTEJ DTUEW TNG ELEKTJVNIK KVUUEJKE.
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Cryptanalysis of a Monoalphabetic Substitution Cipher (5/5)

Analysis

Two more letters: VY=O* Hence Y must be one of F, N, R due to English. We already solved the
map for the plain letter N, while Y has probability 1.61, F has probability 2.28, R has probability
6.03; Therefore Y=F.

We also have: IW=I* Therefore W must be one of F, N, S, T.
Already have the maps for F, N, T, thus W=S.

Summarizing: I=I, V=O, Y=F, W=S

THE MJISTOL JEDION HAS VONE OF EZJOCE’S LAJDEST KONKENTJATIONS OF HIDH

TEKHNOLODQ INDZSTJQ. KOUCZTEJS, KOUU ZNIKATIONS AND UIKJOELEKTJONIKS AJE HELL

JECJESENTED, ALONDSIDE DIDITAL UEDIA, KOUCZTEJ DAUES AND ELEKTJONIK KOUUEJKE.

Now, (thanks to the natural redundancy of English sentences) it is easy to
infer what the underlying plaintext is
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Exercise: Cryptanalysis of the Gold Bug Cipher (1/2)

”The Gold-Bug” is a short story by Edgar Allan Poe published in 1843. The plot follows William

Legrand who was bitten by a gold-colored bug he found on the coastline together with a scarp

piece of parchment. The parchment proved to contain a cryptogram written with invisible ink,

and revealed by the heat of fire burning on the ground.

The Gold Bug Cryptogram
53‡‡†305))6∗;4826)4‡.)4‡);806∗;48†8
$60))85;1‡(;:‡∗8†83(88)5∗†;46(;88∗96
∗?;8)∗‡(;485);5∗†2:∗‡(;4956∗2(5∗-4)8
$8∗;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806∗81(‡9;48;(88;4
(‡?34;48)4‡;161;:188;‡?;

Symbol freq. in the ctx
8 33 1 8
; 26 0 6
4 19 9 5
‡ 16 2 5
) 16 : 4
* 13 3 4
5 12 ? 3
6 11 $ 2
† 8 - 1

. 1
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Solution: Cryptanalysis of the Gold Bug Cipher (2/2)

The decrypted message with spaces, punctuation, and capitalization is:

A good glass in the bishop’s hostel in the devil’s seat twenty-one degrees and thirteen minutes

northeast and by north main branch seventh limb east side shoot from the left eye of the

death’s-head a bee line from the tree through the shot fifty feet out.
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Substitution Ciphers

Statistics on the letters of the ptxs and ctxs could be used to break monoalphabetic substitution

ciphers! From the early 1800s onwards cipher designers tried to break this link

Polyalphabetic Cipher

The plaintext and ciphertext spaces include finite sequence of letters
(words) from the alphabets Am and Ac , respectively.

The encryption transformation is defined as the application of
“L > 1 bijective maps” between the two alphabets: µ0, µ1, . . . ,

The encryption transformation applies

µ0 to the 1st letter of the ptx, µ1 to the 2nd letter, and so on
... periodically in L, i.e., µ0 is applied again to the (L+1)-th letter of
the ptx word, etc...

The key k = (µ0, µ1, . . . , µL−1) is constituted by the L maps
employed to encrypt the ciphertext

For |Am| = 26, L = 5, the keyspace is ((|Am|)!)L = (26!)5≈2441 keys
wide, which is way too large to bruteforce
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Historical Ciphers

Polyalphabetic Cipher

A simple example with L=2:

Map µ0

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

T M K G O Y D S I P E L U A V C R J W X Z N H B Q F

Map µ1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D C B A H G F E M L K J I Z Y X W V U T S R Q P O N

Encrypting HELLO yields the ciphertext SHLJV
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Substitution Ciphers

Vigenère Cipher (1586): a famous hand cipher, which is a particular
case of the Polyalphabetic cipher

An ordered alphabet A is assumed as both plaintext and ciphertext
alphabets, while ptx and ctx messages are letter sequences: words

The cipher employs L cyclic shifts of A as maps for the encryption

The cipher key is given as a sequence of L letters (keyword).
Each of them denotes the 1st letter of a cyclic shift of the alphabet

The key space is now limited to: |K|≤26L, L ≥ 1

Operatively, the definition of the maps is as follow: each letter is
denoted with a number: A= 0, B= 1,. . .,Z= 25, and the cipher key is
given by: k=(k0, k1, . . . , kL−1) kj∈{0, . . . , 25}

Given p∈M, p = p0p1 . . . ,pi, . . .

ci = (pi + kimod L)mod 26 pi = (ci − kimod L)mod 26
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Substitution Ciphers

Vigenère Cipher - Cryptanalysis

The cipher is still easy to break with a Ciphertext Only Attack using
statistics on the letter frequencies

Find the length of the keyword L through the Kasisky Test
(see next slide)

Split up the ciphertext into L sequences of letters (one sequence for
each keyword letter): each sequence is computed by aligning letters
corresponding to the same “shift ciphertext”

Apply frequency analysis to each “shift ciphertext”

Use the retrieved shift cipher keys to derive the value of the Vigenère
keyword
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Substitution Ciphers

Kasisky Test for Finding Vigenère Key Length

In 1853 Major F. Kasisky proposed a method to find the length of the
keyword employed to encrypt messages with the Vigenère cipher

Key observation: Two identical segments of 2 ≤ l ≤ L plaintext
letters (l-gram), will be encrypted to the same sequence of l
ciphertext letters

Deduction: The distance d between two repeated sequences of l
chars in the ciphertext may suggest a multiple of the key length L

Operatively we need to:

Search for pairs of identical segments of length at least 3 (i.e., pair of
3-grams in the ctx message)
Record the distances between the occurrences of two identical segments
Compute the keyword length L as the greatest common divisor of the
distances
note: some segments may be identical only out of chance
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Cryptanalysis of Vigenère Cipher (1/5)

Given the following Vigenère ciphertext:

CJ UT WFCN LTTF VF AAHGKEE DNH VYC IPSPKGTMV EVLINFA, NC HXS SLGIX QNVYGEM VYYI

MVG ZLUHFORRXHB-RIMRXGUZLV TBF KCAXQQD- KJGWERRXHBU ICKHZWKGDGG PFU JGRGIUPR

KKCJ RHBVZLJX JKXMGHIUCW XGHQ KFT MKGERN-YWTJR. LX WPKCGTQV RLS MFCEQPVH DP

BXKSEKGCZ TNFAZL CH UGVBHCC NPVYGKQ IHKCIBH XOEY MIAST KFGHIIY ANUSTJNPVS,

ERPGRWPX JDOS PFRTL, RKXGITZ ERQW, TBF JCRKSV TMGICTRRT WCELKTGHU. FSG ISTJMCTZ

CEB TVCPFKXV ZKMCH KSNP KDKS CEB BHFG FL DNF CSGABHA KM AXH ULAW XHJVPTTZ ERPG-

BST GGVXCPJ KTWWCKC PM O FZQITBEV UWTH YV SHXR VF BD PWVY DPVS-VF-DPVS OVCIBBIJ,

NPIST UMRNAGERH, TBF R DXKA JRLSLVCBC. JGTQIRJGOVVJN, MVG KCRABKTYA PWBRPSKM

GEYQEWPX PTFCVV ADEZCSMGTHKFLH BG HFSCWSF FL QKCCUAPLHKEE TOSTPRWBBI RQ HX-

EWVLRXG QW XTKCU RLS HBGJ RWTH QECH HKP UMV PCWCBCM FGTMVGWBV. UWTH KJ RD

WWUKGCZIKJF P WWIZRPE RQCJPK KJVL XM WU RQ TTGKCW GXDTFBJVWDCC PL HJV QEHYGE

UDKR? JFU SH KG TMCOSTJC EKWXRRTEM YYCC XJGIW HRZNRZAX WU SMJGQGU MUY O

URRTEZKKC PGR UDCPKSF FTTK OP VLIBFG TMCMWPVLI?
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Cryptanalysis of Vigenère Cipher (2/5)

First step:

We need to derive the keyword length L, thus we need to look for repeated sequences of
characters keeping in mind that the keyword will not be too short nor too long (it must be easy
to memorize). For example, in English texts repetitions of the same bigrams is quite common;
and these are likely to match up to the same two letters in the Vigenère keyword every so often.
Subsequently by looking for the distance between two repeated sequences we can guess L

Each distance should be a multiple of the keyword

Taking the gcd of all distances between sequences should give L

From the first sentence of the ciphertext we have:

CJ UT WFCN LTTF VF AAHGKEE DNH VYC IPSPKGTMV EVLINFA, NC HXS SLGIX QNVYGEM VYYI

MVG ZLUHFORRXHB-RIMRXGUZLV TBF KCAXQQD- KJGWERRXHBU ICKHZWKGDGG PFU JGRGIUPR

KKCJ RHBVZLJX JKXMGHI- UCW XGHQ KFT MKGERN-YWTJR

Distance between occurrences of RR: 30
Distance between occurrences of KG: 96, 46
gcd(30,96)=6, gcd(30,46)=2, gcd(96,46)=2.

Unlikely to have a keyword with L=2...Guess L=6

G. Pelosi, A. Barenghi (DEIB) Historical Ciphers and Unconditional Security 24 / 60



Cryptanalysis of Vigenère Cipher (3/5)

Second step:

We take every L-th (sixth) letter starting from the first letter and look at the statistics just as

we did for a shift cipher to deduce the 1st letter of the keyword. Then we repeat the same

procedure starting from the second letter, to find the 2nd letter of the keyword. And so on...

Freq. of the 1st keyword letter
A 1.49 J 3.73 S 0.75
B 1.49 K 8.96 T 7.46
C 8.96 L 0.00 U 8.21
D 1.49 M 0.00 V 8.21
E 6.72 N 2.99 W 2.24
F 4.48 O 1.49 X 0.75
G 11.19 P 8.21 Y 1.49
H 1.49 Q 4.48 Z 0.00
I 2.99 R 0.75

Freq. of the 2nd keyword letter
A 0.00 J 8.21 S 2.24
B 0.75 K 9.70 T 3.73
C 5.22 L 2.24 U 3.73
D 1.49 M 0.75 V 10.44
E 7.46 N 1.49 W 0.75
F 11.19 O 0.00 X 2.99
G 0.75 P 2.24 Y 4.48
H 0.00 Q 0.00 Z 3.73
I 4.48 R 11.94
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Cryptanalysis of Vigenère Cipher (4/5)

Third step:

We now have L=6 shift ciphers to break!!!

We need a statistical test to compare each of the frequency distributions of our subsequences

(e.g, the ones in the previous slides) to the ones of the English alphabet obtained as a

shift-rotation for every possible shift (from 0 to 25).

Chi-squared Statistic

It assesses the similarity of two categorical probability distributions

χ2(E , C)=
25∑
i=0

(Ei−Ci )2

Ci

where Ei is the frequency of the i-th letter of the English alphabet, and Ci
is the the frequency of the i-th letter of the considered shift cipher.

If the two distributions are identical, the chi-squared statistic is 0, if the distributions are very
different, some higher number will result.

Following the aforementioned procedure, we find: keyword=CRYPTO
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Cryptanalysis of Vigenère Cipher (5/5)

The decrypted message with spaces, punctuation, and capitalization is:

AS WE DRAW NEAR TO CLOSING OUT THE TWENTIETH CENTURY, WE SEE QUITE CLEARLY THAT

THE INFORMATION-PROCESSING AND TELECOMMUNICATIONS REVOLUTIONS NOW UNDERWAY WILL

CONTINUE VIGOROUSLY INTO THE TWENTY-FIRST. WE INTERACT AND TRANSACT BY DIRECTING

FLOCKS OF DIGITAL PACKETS TOWARDS EACH OTHER THROUGH CYBERSPACE, CARRYING LOVE

NOTES, DIGITAL CASH, AND SECRET CORPORATE DOCUMENTS. OUR PERSONAL AND ECONOMIC

LIVES RELY MORE AND MORE ON OUR ABILITY TO LET SUCH ETHEREAL CARRIER PIGEONS

MEDIATE AT A DISTANCE WHAT WE USED TO DO WITH FACE-TO-FACE MEETINGS, PAPER

DOCUMENTS, AND A FIRM HANDSHAKE. UNFORTUNATELY, THE TECHNICAL WIZARDRY ENABLING

REMOTE COLLABORATIONS IS FOUNDED ON BROADCASTING EVERYTHING AS SEQUENCES OF

ZEROS AND ONES THAT ONES OWN DOG WOULDNT RECOGNIZE. WHAT IS TO DISTINGUISH A

DIGITAL DOLLAR WHEN IT IS A S EASILY REPRODUCIBLE AS THE SPOKEN WORD? HOW DO WE

CONVERSE PRIVATELY WHEN EVERY SYLLABLE IS BOUNCED OFF A SATELLITE AND SMEARED

OVER AN ENTIRE CONTINENT?

G. Pelosi, A. Barenghi (DEIB) Historical Ciphers and Unconditional Security 27 / 60



Substitution Ciphers

Beale Cipher - another quite famous hand cipher

A well-known variant of the Vigenère cipher

is based on the clue that “Longer the key lengths, lower the possibility
of re-enciphering the same d-grams in the same way”

Beale’s cipher (a.k.a. book cipher): the keyword is taken as the
first few words of a book that is agreed upon by the cipher users

Preserves readability/memorizability of the key, but enlarges the
keyspace effectively
After the keyphrase is chosen, everything else works like the Vigenère
cipher

Questions: What is the resistance of the Vigenère and Beal ciphers against
“known/chosen plaintext attacks”?
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Permutation Ciphers

Permutation Cipher

The encryption transformation of this cipher consists of a
permutation of the positions of the plaintext letters

It is also called the Transposition Cipher

The cipher key is a random permutation with length L,
e.g., L = 5; π = (1243) ∈ S5, that is :

π = (1243) = (1243)(5) =

(
1 2 3 4 5
2 4 1 3 5

)
The key length L is kept secret
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Permutation Ciphers

Example

Take: L = 5, π = (1243), plaintext “fun crypto”

Remove all the spaces: “funcrypto”

Split into chunks of L letters long:“funcr yptoP”
the blocks are padded up (e.g., with ’P’) to obtain a number of
letters which is a multiple of L

Apply the permutation π to the plaintext, blockwise:

“nfcur tyopP”

The ciphertext is composed aligning all the encrypted chunks:
“nfcurtyopP”

Note: a permutation cipher is not equivalent to a substitution map
as each plaintext letter may corresponds to multiple ciphertext letters
depending on the position
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Permutation Ciphers

Pros and Cons

Pros:

The keyspace can be quite large: (L!)

The cipher does alter the d-grams (d ≥ 2 ∧ d ≤ L) frequency
distributions between plaintext and ciphertext message spaces

A ciphertext-only analysis (COA) is not effective

Cons:

The cipher does not alter the single letter frequency distributions

A Known Plaintext Analysis (KPA) can easily reveal the key, if L is
reasonably small
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Permutation Ciphers

Cryptanalysis

KPA: obtain the permutation asking for the encryption of an ordered
string

Example: given the ciphertext:

coenunpaoteitmheewralsiatetglicralldlsdnwohwiatheb

Ask one of the parties to encrypt the message

abcdefghijklmnopqrstuvwxyz

Obtaining the ciphertext

cadbehfigjmknlorpsqtwuxvyz

Exploit the known order of the plaintext to derive the permutation(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
2 4 1 3 5 7 9 6 8 10 12 14 11 13 15 . . .

)
The sequence repeats modulo 5 (thus L = 5). The key is (1243)
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Affine Ciphers

The Hill Cipher

The Hill Cipher is a polyalphabetic cipher invented in 1929 by the
mathematician Lester S. Hill for ease of automation

Each letter of the alphabet is first encoded as a number: A = 0,
B = 1,. . ., Z = 25

The cipher key K is thought as an m ×m invertible matrix of
numbers mod 26

A block of m plaintext letters P is then considered as a column vector
with m components

Encryption: C=K P mod 26

Decryption: P=K−1 C mod 26
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Affine Ciphers

Hill Cipher Cryptanalysis

Pros:

The keyspace can be quite large: ≈(26m
2
)!, possible matrixes

(singular ones cannot be used)

The cipher alters the frequency distributions of texts in a complex way

A ciphertext-only analysis (COA) is not effective

Cons:

A Known Plaintext Analysis (KPA) can easily reveal the key by
solving “linear” equations

Given a single pair of plaintext-ciphertext (P, C ) messages, the key is
computed as: KP=C ⇒ K=C P−1
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Historical Ciphers

Lesson Learned

The cipher key should be long enough to withstand bruteforce attacks

Rule of thumb: the key-space should have a size, which is encoded
with at least 80-bit (for currently off-the-shelf computing machines)

The mapping between ptx and ctx letters, in the definition of the
encryption/decryption transformation, should not be the same for
every occurrence of the same ptx letter (i.e., it should be position
dependent – a combination of substitution and permutation may be
of help to avoid frequency based COAs)

A “linear” mapping (or any other efficiently invertible relation)
between ptx and ctx are threaten by KPAs

Frequency attacks exploit the redundancy of the English language

lossless compression before encryption removes redundancy !!!

employing an uncommon (or dead) natural language may also help !!!
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Perfect Secrecy – Information Theoretic Security

Is it possible to achieve perfect secrecy?

A perfectly secret cipher should be unbreakable regardless of the
(computational) effort thrown at it

This implies that the ciphertext alone provides no information (no
clue) to an attacker

Claude Shannon proved the existence of such a cryptoscheme in its
Communication Theory of Secrecy Systems paper (1945)

Every other possible scheme claiming perfect secrecy is either a scam,
or a (possibly unnecessary) complication of this one

A perfectly secure cipher is proven to be resistant to COAs, KPAs, and
CCA(2)s
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Information Theoretic Security

Given a generic symmetric cipher

〈A,M,K, C, {Ek(), k ∈ K}, {Dk(), k ∈ K}〉

The attacker can analyze an arbitrary number of (chosen) ptx-ctx pairs
Basic Assumptions

Each item in M,K, C is modeled as a random variable P, K , C ,
respectively, with certain probability distributions:
Pr(P = m),Pr(K = k),Pr(C = c), with m ∈M, k ∈ K and c ∈ C
The two variables P and K are statistically independent,
i.e.: the user does not employ any criterion in picking a key to encrypt a
given message

Since K and P are independent random variables, the probability to
observe a certain ctx can be written as follows (n.b. different keys may
transform different ptx into the same ctx):

Pr(C = c) =
∑

k:c∈{Ek (m),∀m∈M}

Pr(K = k) Pr(P = Dk(c))
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Information Theoretic Security

Consider the following toy symmetric-key cipher,
everything about M, C, K is known.

M={a, b, c , d}; C={1, 2, 3, 4}; K={k1, k2, k3};
Pr(P=m), m∈M

a b c d
0.25 0.3 0.15 0.3

Pr(K=k), k∈K
k1 k2 k3

0.25 0.5 0.25

c=Ek (m), k∈K, m∈M
a b c d

k1 3 4 2 1
k2 3 1 4 2
k3 4 3 1 2

Prob. of observing a certain ctx:
Pr(C=1)=Pr(K=k1)·Pr(P=d)+Pr(K=k2)·Pr(P=b)+Pr(K=k3)·Pr(P=c)=0.2625
Pr(C=2)=0.2625, Pr(C=3)=0.2625, Pr(C=4)=0.2125

... ctxs are distributed almost uniformly
Prob. of observing a certain ctx, knowing “a priori” the ptx value:

Pr(C = c|P = m) =
∑

k:m=Dk (c)

Pr(K = k)

Pr(C = c|P = m)
a b c d

1 0 0.5 0.25 0.25
2 0 0 0.25 0.75
3 0.75 0.25 0 0
4 0.25 0.25 0.5 0
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Information Theoretic Security

When we try to break a cipher we are interested in the conditional probability of
guessing the ptx value, knowing the value of the ctx, i.e.: Pr(P=m|C=c)

Pr(P = m|C = c) =
Pr(P = m) Pr(C = c|P = m)

Pr(C = c)

Pr(P = m|C = c)
1 2 3 4

a 0 0 0.71 0.29
b 0.57 0 0.29 0.35
c 0.14 0.14 0 0.35
d 0.29 0.86 0 0

For the toy cipher in this small example, we note that the knowledge of the
ciphertext reveals a lot of information:

if we know C=1, then the ptx is 6=a

if we know C=2, then the ptx is 6=a, 6=b

if we know C=3, then the ptx is 6=c , 6=d

if we know C=4, then the ptx is 6=d
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Perfect Secrecy

Definition

A symmetric-key cryptosystem is Perfectly Secure if the ciphertext does
not reveal any information about the plaintext

Pr(P = m|C = c) = Pr(P = m), ∀m ∈M, c ∈ C

Lemma

A symmetric-key cryptosystem is Perfectly Secure if the plaintext does not
reveal any information about the ciphertext:

Pr(C = c |P = m) = Pr(C = c), ∀m ∈M, c ∈ C

Proof.

Pr(C=c |P=m)=Pr(C=c) ⇔ Pr(P=m|C=c) Pr(C=c)
Pr(P=m) =Pr(C=c) ⇔

Pr(P=m|C=c)=Pr(P=m)
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Perfect Secrecy

Lemma

Given a Perfectly Secure symmetric key cryptosystem, the following
conditions hold

|K| ≥ |C| ≥ |M|

Proof
1 |C| ≥ |M| since the encryption must be injective (i.e. distinct ptxs

map into distinct ctxs)

2 Pr(C = c) > 0 ∀c ∈ C, otherwise we can alter the definition of the ctx
space; A perfectly secure cipher means Pr(C=c)=Pr(C=c |P=m) > 0
therefore ∀m ∈M, c ∈ C there must be at least one k ∈ K s.t.
Ek(m) = c which in turn means that |K| ≥ |C|
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Perfect Secrecy

Theorem (C. Shannon)

Let
〈A,M,K, C, {Ek(), k ∈ K}, {Dk(), k ∈ K}〉

denote a symmetric key cryptosystem where the keys are picked
independently of plaintexts values and |K| = |C| = |M|
The cryptosystem is perfectly secure iff

(i) every key is used with probability 1
|K|

(ii) ∀ (m, c)∈M×C there is a unique key k∈K s.t. Ek(m)=c
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Perfect Secrecy (Shannon’s Theorem)

Proof. if part
Hp: |K| = |C| = |M|, (i) every key is s.t. Pr(K = k) = 1/|K|,

(ii) ∀m ∈M, c ∈ C ∃ ! k ∈ K s.t. c = Ek (m)

Th: The system is perfectly secure: Pr (P = m|C = c) = Pr(P = m)

Considering a given ctx c and keeping in mind that P and K are independent

Pr(C = c) =
∑

k:c∈{Ek (m),∀m∈M}

Pr(K = k) Pr(P = Dk(c)) =

using(i)
=

1

|K|
∑
k

Pr(P = Dk(c))
using(ii)

=
1

|K|
∑
m

Pr(P = m) =
1

|K|

Now, the following equalities hold:

Pr (P = m|C = c) =
Pr(C = c |P = m) Pr(P = m)

Pr(C = c)
=

1/|K|Pr(P = m)

1/|K|
cvd.
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Perfect Secrecy (Shannon’s Theorem)

Proof. only if part
Hp: The system is perfectly secure: |K| = |C| = |M|, Pr (P = m|C = c) = Pr(P = m)
Th: (i) every key is s.t. Pr(K = k) = 1/|K|

(ii) ∀m ∈M, c ∈ C ∃ ! k ∈ K s.t. c = Ek (m)
Given an arbitrary pair (m, c): at least one k∗ for mapping m 7→c exists, otherwise
Pr(P=m|C=c)=0, Pr(P=m)6=0, thus denying the Hp.
At most one k∗ for mapping m 7→c exists. Indeed, if two keys k1, k2 satisfy
Ek1

(m)=Ek2
(m)=c, then since there are only as many keys as ctxs, i.e.: |K|=|C|, there

must be another ctx c ′∈C with Ek (m)6=c ′ ∀k and the mapping m 7→c ′ would be
impossible ∀k∈K. So this verifies (ii).

Given a ctx c, label as ki the key values employed for mi 7→c, 1≤i≤|K|. From the Hp. of
perfect secrecy

Pr(P = mi) = Pr (P = mi |C = c) =
Pr(C = c|P = mi ) Pr(P = mi )

Pr(C = c)
=

∃!k s.t. mi is mapped to c
=

Pr(K = ki) Pr(P = mi)

Pr(C = c)
⇔

simplifying the first and last members of this chain of equalities...

⇔ Pr(C = c) = Pr(K = ki)
being true ∀ i, 1≤i≤|K|

=⇒ Pr(K = ki) = 1/|K|, ∀ i, cvd.
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Vernam Cipher

In 1919 Eng. Gilbert S. Vernam patented a telegraphic device able to
encrypt the symbols (in Baudot encoding – i.e., 5-bit ASCII) typed in
by an operator

The ciphertext was composed through a bitwise eXclusive-OR with a
sequence of symbols provided on a paper tape (the key) having the
same length of the input message (i.e., the plaintext)

US army Gen. Joseph Mauborgne proposed to employ a
distinct paper tape (key value) for each ptx (condition (ii) of
Shannon’s Th.) containing random information (condition (i) of
Shannon’s Th.).
This idea combined with the Vernam’s xor-ing machine became
known as the One-Time-Pad (OTP) enciphering machine

G. Pelosi, A. Barenghi (DEIB) Historical Ciphers and Unconditional Security 45 / 60



Vernam Cipher

The aformentioned OTP system employed with binary keys and messages
is the most effective implementation of a perfectly secure cryptoscheme

The premises of Shannon’s theorem hold:
1 the ptx space M, the ctx space C and the key space K all have the

same size. Even better: M=C=K={0, 1}L, L>0.
2 the key value is independent from the ptx value

the necessary and sufficient conditions of the theorem hold:
1 The key value is randomly generated. Thus, every key is actually used

with probability 1/|K|
2 The xor operation is a modulo 2 addition between elements in
{0,1}; the operation defines a trivial algebraic group over {0,1}, then
for each ptx-ctx pair (m,c) there is a unique key s.t. m ⊕ k=c

G. Pelosi, A. Barenghi (DEIB) Historical Ciphers and Unconditional Security 46 / 60



Vernam Cipher

OTP
The key management of a OTP cipher is a pain!
Choosing a key with uniform probability over K, Pr(K=k)= 1

|K| , means that

each key must be used only once

each key must have the same length of the ptx

each key must be truly random (i.e., unpredictable)

Moreover, the key pad must be available to both communication parties and used

taking care of employing the keys in the same order

If the sender re-uses always the same key, an attacker can ask to cipher a
known message m and recover the key as: k=c⊕m (Known Ptx Attack)

if the same key is used twice for encrypting two different messages, some
infos about the ptxs is leaked from the ctxs as:
if c1 = m1 ⊕ k , c2 = m2 ⊕ k then (c1 ⊕ c2)=(m1 ⊕m2)
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Vernam Cipher

Modified Shift Cipher

Consider the following (less efficient) variant of OTP cipher

M, C,K: strings composed by 5 letters of the English alphabet

Identify each letter with a number: A=0, B=1, C=2, . . .

Given a ptx (m0,m1,m2,m3,m4) and a randomly chosen key
(k0, k1, k2, k3, k4) with 0≤ki≤25, the encryption transformation computes
the ctx as: ci=mi+ki mod 26

This system is perfectly secure (M=C=K={0, . . . , 25}5; ptxs and keys are independent):

each key is chosen with uniform probability ⇒ Pr(K = k) = 1
265

for each ptx-ctx pair 〈m, c〉 there is a unique key: ki=(ci−mi ) mod 26,∀ i

If the encrypted messages are no more than 265 (i.e., each key is used only once), then the

attacker cannot learn anything as the decryption of a given ctx, through employing an exhaustive

search of the key, will lead to recover all the meaningful plaintext strings composed by 5 letters
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Computationally secure ciphers

A practical approach

The One-Time-Pad is used in practice only in scenarios where secrecy
is paramount (military/diplomatic communications)

The fallback is to design a computationally secure symmetric cipher

Note that, public-key schemes were introduced after Shannon’s work ...
and by construction they are only computationally secure

Modern computationally secure ciphers are able to reuse a “small
key” (128-256 bits) while:

Avoiding the disclosure of the plaintext from the ciphertext
Avoiding the disclosure of the key from plaintext-ciphertext pairs

Both these conditions are warranted provided the attacker has not an
unbounded computational power

Practically, the computational limit is made so high that no realistic
attacker is able to break the cipher (e.g., computing 2256 encryptions)
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Computationally secure ciphers

We need to develop some elements of the information theory related to
computationally secure ciphers.
The main results are due (again) to Shannon and his idea to measure the
Information through the concept of Entropy.

We will use the term “Information” as a synonym for Uncertainty:

if you are uncertain (or unaware) about the meaning of something, then
revealing the meaning gives you fresh knowledge and hence information

From the point of view of a crypto-analyst you want to find out the
meaning of a ciphertext:

you could guess the plaintext
the level of uncertainty you have about either the (correct) plaintext or
the (correct) key quantifies the amount of information leaked by the ctx
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Entropy – Intuitions

Consider a set with two elements S={“Yes”, “No”} including the
answers Alice can give to the questions of Bob.

Model any answer given by Alice as a sample of the random variable
X taking values over S.

The level of uncertainty that Bob has about the value of the received
answer is called entropy of X , denoted as H(X ), and measured in bit

if Bob knows “a priori” that the answer of Alice to any question is
“Yes”, then there is no uncertainty about what he will hear as
answers, thus the answers reveal to him no information, i.e., H(X )=0

if Bob has no idea of the answer he will hear from Alice, then the
probability of hearing “Yes” is the same of the one of hearing “No”,
thus he will learn 1 bit of information, i.e., H(X )=1
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Entropy

Definition

Let X be a random variable which takes values in {x1, x2, . . . xn} with probability
distribution pi=Pr(X = xi ), ∀1≤i≤n. The Entropy of X is defined as:

H(X ) = −
n∑

i=1

pi log2 pi

assuming conventionally that pi log2 pi=0, if pi=0.

H(X )≥0, and H(X )=0 only if pj=1, pi=0 ∀i , j 6=i (
∑

i pi+pj=1)

if pi=
1
n ∀i , then H(X )=log2 n

(Theorem) If X is a random variable over {x1, . . . , xn}, it is alway true that
0≤H(X )≤log2 n

Another way to look at the Entropy is that it assesses by how much one can
compress the representation of the information
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Entropy

Considering the previous example of the toy symmetric-key cipher:

M={a, b, c , d}; C={1, 2, 3, 4}; K={k1, k2, k3};
Pr(P=m), m∈M

a b c d
0.25 0.3 0.15 0.3

Pr(C=c), c∈C
1 2 3 4

0.26 0.26 0.26 0.22

Pr(K=k), k∈K
k1 k2 k3

0.25 0.5 0.25

c=Ek (m), k∈K, m∈M
a b c d

k1 3 4 2 1
k2 3 1 4 2
k3 4 3 1 2

H(P)≈1.95, H(K )≈1.5, H(C )≈2.0

a ctx leaks about 2 bits of information about the key and the ptx

it is interesting to find a method to assess how much information is
about the key and how much of it is about the ptx
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Entropy

Notable definitions
Given two random variables X , Y over {x1, . . . , xn} and {y1, . . . , ym} the joint entropy
considers their joint distribution:

H(X ,Y ) = −
n∑

i=1

m∑
j=1

Pr (X = xi ,Y = yj ) log2 Pr (X = xi ,Y = yj )

and defines the amount of information you get observing a pair of values (x , y)

Given two random variables X , Y over {x1, . . . , xn} and {y1, . . . , ym} the entropy of X
given one observation Y = y is:

H(X ,Y = y) = −
n∑

i=1

Pr (X = xi |Y = y) log2 Pr (X = xi |Y = y)

Given two random variables X , Y over {x1, . . . , xn} and {y1, . . . , ym} the conditional
entropy of X given Y is:

H(X ,Y ) = −
m∑
j=1

Pr (Y = Yj )H(X |Y = yj ) =

= −
n∑

i=1

m∑
j=1

Pr (Y = Yj ) Pr (X = xi ,Y = yj ) log2 Pr (X = xi |Y = yj )

defines the amount of information you get after a value of Y has been revealed
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Entropy

Notable statements (...easy to prove)

H(X ,Y )≤H(X )+H(Y ), the equality holds if X , Y are independent

H(X ,Y )=H(Y )+H(X |Y );

H(X |Y )≤H(X ), the equality holds if X , Y are independent

Going back to a generic symmetric-key cipher

H(P|K ,C )=0: if you know the ctx and the key you do not have any
uncertainty in deriving the ptx

H(C |P,K )=0: if you know the ptx and the key you do not have any
uncertainty in deriving the ctx

H(C ,P,K )=H(P,K )+H(C |P,K )=H(P,K )=H(P)+H(K )

H(C ,P,K )=H(K ,C )+H(P|K ,C )=H(K ,C )

the last two expressions enable us to write: H(K,C)=H(P)+H(K)
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Entropy

Key Equivocation

It defines the amount of information (uncertainty) about the key, that you
got by the knowledge of a ctx: H(K |C )

In a COA the goal is to find the correct key value looking at some ctxs

H(K|C) = H(K ,C )− H(C ) = H(P) + H(K)−H(C)

Considering our previously introduced toy cipher:
H(P)≈1.95, H(K )≈1.5, H(C )≈2.0. H(K |C )=1.95+1.5−2.0=1.45

The knowledge of any ctx leaves us with an uncertainty about the key of
1.45 bits, thus each ctx would allow us to learn 0.05 bits

how to effectively use these 0.05 bits to rule out a certain subset of
key values... is left to the attacker

it would have been better to have a (theoretical) leakage from any ctx
<<0.05 (possibly negligible)
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Spurious Keys and Unicity Distance

The redundancy of the natural language employed for the plaintext messages
is of great help to the attackers

For example, the following English sentence can be easily understood even if
more than half of the characters is missing:

On** up** a t**e t**re **s a **rl **ll** Sn** Wh**e

What about the Entropy per letter HL of the English language?

HL≤log2 26=4.70 (the second member is the entropy per letter of a
completely random string...)
keeping into account the actual frequencies of the English letters M
HL≤H(M)=4.14
Keeping into account the actual frequencies of English digrams M2

HL≤H(M2)
2 =3.56... an so on ... assessing H(M3)

3 , H(M4)
4 etc...

An approximation of the actual value is: 1.0≤HL≤1.5
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Spurious Keys and Unicity Distance

Definition of Language Redundancy

RL = 1− HL

log2 |M|

For English |M|=26, RL≈0.75.
This means that 10MB of English text may be encoded in 2.5MB.

Consider a cipher 〈A,M, C, K, {Ee : e ∈ K}, {Dd : d ∈ K}〉
where each ciphertext word is composed by n symbols, and |M|=|C|.
Taking a ctx c∈C, let us denote as KMeaningful(c) the set of keys which
decrypt c in “meaningful” plaintexts.
Average number of Spurious keys:

s̄n =
∑
c∈C

Pr (C = c)(KMeaningful(c)− 1)
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Spurious Keys and Unicity Distance

As the length of the plaintext and ciphertext words increase (n→∞),
after some approximations ... we can find that:

s̄n ≥
|K|
|M|nRL

− 1

it is intuitive that the number of spurious keys decreases as the length
of the ctx increases; while an attacker would like s̄n=0

Unicity Distance

It is the length of ciphertext words (i.e., the number of ctx) n=n0 such
that the number of spurious keys is equal to zero, i.e.: s̄n=0

n0 ≈
log2 |K|

RL log2 |M|
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Unicity Distance

In a substitution cipher: |M|=26, |K|=26!, RL≈0.75 the unicity
distance is: n0≈25

In a generic modern symmetric-key cipher we may have that
|M|=|C|=|K|=|{0, 1}|l , for some bit length l>>1, while the ptx
language is English.

Assuming RL≈0.75 (this is an under-estimate as we encode English
letters with ASCII). The unicity distance is: n0≈ l

RL
= 4l

3 .

if we would be able to compress the plaintext in a perfect manner, to
have RL≈0, then n0 →∞
Modern ciphers encrypt plaintexts with no redundancy ?
The answer is no. As they usually add to the ptx some redundancy to
counter active attacks, Known Plaintext Attacks or (Adaptive)
Chosen Ciphertext Attacks.

the considerations about the unicity distance are valid only if the
threat model defines a passive attacker
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